
Leveraging LLVM 
Optimizations to Speed up 

Constraint Solving

Benjamin Mikek

10 April 2024

Vienna, Austria



Background: SMT Constraints

• SMT (Satisfiability Modulo Theories) constraints encode first-order 
logic problems

• Symbolic execution (KLEE) generates SMT constraints

• Alive [PLDI15, SAS16, PLDI21] uses SMT to verify LLVM 
optimizations

• Many advanced solvers: Z3, CVC5, Boolector, Bitwuzla, Yices, etc.

• Theories for bitvectors, floating-point, integers, real numbers, etc.



Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

Is this constraint satisfiable?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

0 0 1 0 1 1 0 0

1 0 1 1 0 1 0 0

× =

a b

0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0

0 0 1 0 = 0 0 0 0
?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Can multiplication overflow?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

0 0 1 0 1 1 0 0

1 0 1 1 0 1 0 0

× =

a b

0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0

0 0 1 0 = 0 0 0 0
?

/ a ≥ b
?

MAX

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Multiplication Overflow

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

Is this constraint satisfiable?

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Multiplication Overflow

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

Is this constraint satisfiable?
No!

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Multiplication Overflow

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2

Is this constraint satisfiable?
But … z3 takes 10 minutes to solve it 

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV/-/blob/master/challenge/multiplyOverflow.smt2


Example: Multiplication Overflow

> z3 complex.smt2
unsat

Takes 595 seconds 

> z3 simple.smt2
unsat

Takes 0.02 seconds ☺



SMT Constraint LLVM IR Simple LLVM IR’
Simple SMT 
Constraint

Transformation Black Box

SAT/UNSAT SAT/UNSAT=

Possible ✓
Already exists ✓



SMT Constraint LLVM IR Simple LLVM IR
Simple SMT 
Constraint

SAT/UNSAT SAT/UNSAT=



SMTLIB and LLVM IR

SMTLIB LLVM
Bitvector types One for each integer width n One for each width up to 223

Floating point types One for each integer pair eb, 
sb, but almost all in powers of 2

16-bit, 32-bit, 64-bit, 128-bit

Logic operations and, or, xor, not, ite,=>, … and, or, xor, select, …

Bitvector math operations bvadd, bvsub, bvmul, bvsdiv, 
bvudiv, …

add, sub, mul, sdiv, udiv

Floating point math operations fp.add, fp.sub, fp.div, fp.fma, … fadd, fsub, fdiv, llvm.fma, …

Conversions to_fp, to_fp_unsigned, 
fp.to_sbv, …

sitofp, uitofp, fptosi, …



SLOT Translation

• Implemented as open source tool SLOT (SMT-LLVM 
Optimizing Translation) [FSE 2023]

• Frontend: traverse the syntax tree of each SMT assertion

• Build an LLVM expression with the same semantics

• Most operations have 1-to-1 equivalents

• bvmul -> mul, bvadd -> add, fp.add -> fadd

• Some expressions are more complex and may involve 
undefined behavior handling



SLOT: Key Challenges

• SLOT has two parts: a front end and back end. Both have 
to preserve semantics

• LLVM is missing some SMT operations

• SMTLIB is missing some LLVM operations

• SMT constraints are declarative; LLVM is imperative



SLOT by Example: Checking for 
Overflow



Frontend Translation

The LLVM function 
returns true if the 
inputs satisfy the 
underlying constraint.



Optimization
instcombine



Optimization
instcombine, gvn 



Optimization
instcombine, gvn, instcombine 



Backend Translation

Can be solved almost instantly (0.02 seconds)!



SMT Constraint LLVM IR Simple LLVM IR’
Simple SMT 
Constraint

SAT/UNSAT SAT/UNSAT=595 sec 0.02 sec

0.004 sec

0.001 sec 0.007 sec



Results

• Three logics: bitvectors, floating-point, and mixed

• Three solvers: Z3, CVC5, Boolector

• Three questions:
• Can SLOT solve constraints for which solvers time out?

• How much does SLOT speed up solving?

• Which compiler optimization passes contribute?



Results

• SLOT increases the number of solvable constraints at 
600 second timeouts substantially with all solvers:
• 9-14% for floating-point

• 32-67% for mixed

• 15-18% for bitvectors

• SLOT can solve hundreds of constraints for which all 
existing solvers time out



Results

Floating-point Mixed Bitvector



Optimization Pass Contributions

• SMT constraints are simpler than programs

• All a single function (intraprocedural) [-10 passes]

• No memory operations [-7 passes]

• No branching (all one basic block) [-17 passes]

• Other reasons (debug info, backends, etc) [-16 passes]

• We disable vectorization, since this slows down solving

• 8 relatively simple passes are left



Optimization Pass Contributions

• The most effective optimizations passes are reassociate, 
instcombine, and global value numbering

• Solver developers can learn from these results about new 
optimizations to include in solvers

How many benchmarks does each pass change? Which passes contribute the most speedup?



Discussion
• What is simpler in the compiler context is not always 

simpler in the SMT context

• Solvers and SLOT form a sieve under portfolio methodology

• All presented results included the overhead of translation. 
Overhead is substantial for small constraints, but grows 
more slowly than solving time

Time Interval Floating-point Mixed Bitvector

0-30 32.21% 22.17% 48.24%

30-60 0.02% 0.16% 3.96%

60-120 0.01% 0.20% 1.67%

120-300 0.01% 0.09% 2.01%

300-600 0.02% 0.01% 2.84%



Extending to Unbounded Theories

• SMTLIB also defines (mathematical) integers and real

• Integers can be converted to bitvectors

• Handling these theories requires bound inference

• Selected bounds will not always be enough, so we 
underapproximate and verify



Extending to Unbounded Theories

• Large widths: faster to solve, but less likely to be correct

• Small widths: slower to solve, but more likely to be correct



Extending to Unbounded Theories

• Bound inference via abstract interpretation (STAUB) [PLDI 2024]

• STAUB + SLOT speeds up nonlinear integers by 1.48x (z3) and 
2.76x (CVC5)

• Up to 3.93x (z3) and 2.31x (CVC5) for verified linear integer 
benchmarks

• Substantial speedups for selected real constraints (up to 7x), 
but no substantial speedup on average



Conclusion and Future Work

• LLVM optimization passes can be applied outside the 
compiler context with substantial benefits

• Using our pass contribution data to inform future 
developments of solvers

• Adapting SMT solver simplification tactics to LLVM

• New MLIR dialect for SMT constraints

• Extension to arrays and strings



Conclusion and Future Work

• LLVM optimization passes can be applied outside the 
compiler context with substantial benefits

• Using our pass contribution data to inform future 
developments of solvers

• Adapting SMT solver simplification tactics to LLVM

• New MLIR dialect for SMT constraints

• Extension to arrays and strings

Any questions?


	Slide 1: Leveraging LLVM Optimizations to Speed up Constraint Solving
	Slide 2: Background: SMT Constraints
	Slide 3: Example: Can multiplication overflow?
	Slide 4: Example: Can multiplication overflow?
	Slide 5: Example: Can multiplication overflow?
	Slide 6: Example: Can multiplication overflow?
	Slide 7: Example: Multiplication Overflow
	Slide 8: Example: Multiplication Overflow
	Slide 9: Example: Multiplication Overflow
	Slide 10: Example: Multiplication Overflow
	Slide 11
	Slide 12
	Slide 13: SMTLIB and LLVM IR
	Slide 14: SLOT Translation
	Slide 15: SLOT: Key Challenges
	Slide 16: SLOT by Example: Checking for Overflow
	Slide 17: Frontend Translation
	Slide 18: Optimization
	Slide 19: Optimization
	Slide 20: Optimization
	Slide 21: Backend Translation
	Slide 22
	Slide 23: Results
	Slide 24: Results 
	Slide 25: Results 
	Slide 26: Optimization Pass Contributions 
	Slide 27: Optimization Pass Contributions
	Slide 28: Discussion
	Slide 29: Extending to Unbounded Theories
	Slide 30: Extending to Unbounded Theories
	Slide 31: Extending to Unbounded Theories
	Slide 32: Conclusion and Future Work
	Slide 33: Conclusion and Future Work

